X-ray structure of a vanadium-containing enzyme: chloroperoxidase from the fungus Curvularia inaequalis.

نویسندگان

  • A Messerschmidt
  • R Wever
چکیده

The chloroperoxidase (EC 1.11.1.-) from the fungus Curvularia inaequalis belongs to a class of vanadium enzymes that oxidize halides in the presence of hydrogen peroxide to the corresponding hypohalous acids. The 2.1 A crystal structure (R = 20%) of an azide chloroperoxidase complex reveals the geometry of the catalytic vanadium center. Azide coordinates directly to the metal center, resulting in a structure with azide, three nonprotein oxygens, and a histidine as ligands. In the native state vanadium will be bound as hydrogen vanadate(V) in a trigonal bipyramidal coordination with the metal coordinated to three oxygens in the equatorial plane, to the OH group at one apical position, and to the epsilon 2 nitrogen of a histidine at the other apical position. The protein fold is mainly alpha-helical with two four-helix bundles as main structural motifs and an overall structure different from other structures. The helices pack together to a compact molecule, which explains the high stability of the protein. An amino acid sequence comparison with vanadium-containing bromoperoxidase from the seaweed Ascophyllum nodosum shows high similarities in the regions of the metal binding site, with all hydrogen vanadate(V) interacting residues conserved except for lysine-353, which is an asparagine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterologous Expression of the Vanadium-containing Chloroperoxidase from Curvularia inaequalis in Saccharomyces cerevisiae and Site-directed Mutagenesis of the Active Site Residues

The vanadium-containing chloroperoxidase from the fungus Curvularia inaequalis is heterologously expressed to high levels in the yeast Saccharomyces cerevisiae. Characterization of the recombinant enzyme reveals that this behaves very similar to the native chloroperoxidase. Site-directed mutagenesis is performed on four highly conserved active site residues to examine their role in catalysis. W...

متن کامل

Peroxidase and phosphatase activity of active-site mutants of vanadium chloroperoxidase from the fungus Curvularia inaequalis. Implications for the catalytic mechanisms.

Mutation studies were performed on active-site residues of vanadium chloroperoxidase from the fungus Curvularia inaequalis, an enzyme which exhibits both haloperoxidase and phosphatase activity and is related to glucose-6-phosphatase. The effects of mutation to alanine on haloperoxidase activity were studied for the proposed catalytic residue His-404 and for residue Asp-292, which is located cl...

متن کامل

The stability and steady-state kinetics of vanadium chloroperoxidase from the fungus Curvularia inaequalis.

In this article we report on the steady-state kinetics of the chlorination and the stability of the vanadium chloroperoxidase from the fungus Curvularia inaequalis. The data show that the kinetics of this enzyme resemble that of the vanadium bromoperoxidase from the seaweed Ascophyllum nodosum. At low pH, chloride inhibited the enzyme, but the inhibition was of a dual nature. At pH 4.1 a mixed ...

متن کامل

Inhibition of vanadium chloroperoxidase from the fungus Curvularia inaequalis by hydroxylamine, hydrazine and azide and inactivation by phosphate.

The first detailed inhibition study of recombinant vanadium chloroperoxidase (rVCPO) using hydroxylamine, hydrazine and azide has been carried out. Hydroxylamine inhibits rVCPO both competitively and uncompetitively. The competitive inhibition constant K(ic) and the uncompetitive inhibition constant K(iu) see are 40 and 80 microM, respectively. The kinetic data suggest that rVCPO may form a hyd...

متن کامل

Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis.

The vanadium-dependent chloroperoxidase from Curvularia inaequalis is a stable and efficient biocatalyst for the hydroxyhalogenation of a broad range of alkenes into halohydrins. Up to 1 200 000 TON with 69 s-1 TOF were observed for the biocatalyst. A bienzymatic cascade to yield epoxides as reaction products is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 93 1  شماره 

صفحات  -

تاریخ انتشار 1996